00
00
00
00
  • 重要时间
  • 2025年8月8日

    会议报告提交截止日期

  • 2025年8月12日

    会议注册提交截止日期

  • 2025年8月15日

    会议报到

  • 2025年8月16日上午

    开幕式及大会报告

  • 2025年8月16日下午

    分会场报告

  • 2025年8月17日上午

    大会报告及闭幕式

[口头报告]基于多保真度数值模拟融合的大件车辆过桥高效评估方法

基于多保真度数值模拟融合的大件车辆过桥高效评估方法
编号:96 访问权限:仅限参会人 更新:2025-08-13 16:42:00 浏览:40次 口头报告

报告开始:2025年08月15日 20:00 (Asia/Shanghai)

报告时间:10min

所在会议:[S1] 8月15日晚上 研究生分会 » [S1-3] 研究生分会场三

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要

The proliferation of oversized vehicle transport presents a significant challenge to the safety of in-service bridges, necessitating assessment methods that are both accurate and efficient. Traditional deterministic approaches are often unreliable as they neglect parameter uncertainties, while probabilistic methods, though rigorous, are computationally prohibitive due to their reliance on expensive Monte Carlo simulations, making them unsuitable for rapid engineering approvals. To address this bottleneck, this paper proposes an efficient assessment method for oversized vehicle bridge crossings based on the fusion of multi-fidelity numerical simulations.

The core of the proposed method is the development of a machine learning-driven surrogate model that integrates low-fidelity (LF) and high-fidelity (HF) simulations to efficiently and accurately predict bridge dynamic responses. By learning the mapping relationship between the computationally cheap LF influence line method and the accurate but expensive HF vehicle-bridge interaction (VBI) analysis, the surrogate model can make precise predictions. The model is trained on a small, paired dataset of LF and HF responses, incorporating key uncertainties in the vehicle-bridge system.

Validation on a typical hollow slab girder bridge demonstrates the method's effectiveness. The failure probability calculated using the proposed approach shows a relative error of only 1-3% compared to the ground truth results from high-fidelity simulations. Crucially, the computational efficiency is improved by approximately 95.3%, reducing a multi-week analysis to under 24 hours. This research provides an effective and practical solution for the rapid and reliable safety assessment of oversized vehicles crossing bridges.

关键字
bridge engineering; customized transportation vehicles; safety assessment method; relia-bility; machine learning
报告人
首汉清
学生 长安大学

发表评论
验证码 看不清楚,更换一张
全部评论
登录 注册缴费 会议动态 赞助方案